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SUMMARY

The objective of this article is to review the pathophysiological bases of gray matter heterot-

opia and to appreciate their involvement in brain cortical development and functional con-

sequences, namely epilepsy. The development of the cerebral cortex results from complex

sequential processes including cell proliferation, cell migration, cortical organization, and

formation of neuronal networks. Disruption of these steps yields different types of cortical

malformations including gray matter heterotopia, characterized by the ectopic position of

neurons along the ventricular walls or in the deep white matter. Cortical malformations are

major causes of epilepsy, being responsible for up to 40% of drug-resistant epilepsy, and the

cognitive level of affected patients varies from normal to severely impaired. This review

reports data from human patients and animal models highlighting the genetic causes for

these disorders affecting not only neuronal migration but also the proliferation of cortical

progenitors. Therefore, gray matter heterotopias should not be considered as solely due to

an abnormal neuronal migration and classifying them as such may be too restrictive. The

review will also summarize literature data indicating that besides ectopic neurons, neighbor

cortical areas also play a consistent role in epileptogenesis, supporting the notion that plastic

changes secondary to the initial malformation are instrumental in the pathophysiology of

epilepsy in affected patients.

Gray matter heterotopia (GMH) is a group of neurological disor-

ders characterized by the ectopic position of neurons. They pres-

ent as ectopic clusters of neurons along the ventricular walls

[mainly comprising periventricular nodular heterotopia (PNH)] or

they form in the deep white matter a nodule (focal subcortical

heterotopia) or a packaged band of neurons [subcortical band het-

erotopia or doublecortex (SBH)]. In the last update of the classifi-

cation of malformations of cortical development [1], GMH were

categorized as the result of an abnormal neuronal migration.

Although the causes are not yet fully elucidated, a number of

causative genes play also important roles on radial glia, prolifera-

tion, and differentiation of progenitors, supporting the notion that

GMH may result from a diversity of alterations of developmental

programs although the final phenotype can be read as a migration

defect: the cells do not reach the appropriate destination layer.

The first part of this review will provide an updated view of

genetic causes and cellular and molecular mechanisms involved

in the genesis of GMH.

GMH cause a variety of symptoms mainly including epilepsy,

frequently resistant to medication. GMH often affects as well

higher brain functions being responsible for mental delay,

although symptoms range from absent to profound. Clinical

investigations so far conducted failed to identify the epileptogenic

focus in GMH patients, but it is proposed that reactive changes in

peri-ectopic areas are instrumental. This precludes surgery and

urges investigations of the pathophysiological changes leading to

hyperexcitability in GMH. Data obtained in animal models will be

presented in the second part of this review and compared with

available data from human patients to propose a working model

for future investigations.

Genetic Causes and Cellular and
Molecular Mechanisms

Periventricular Nodular Heterotopia

Periventricular nodular heterotopia (PNH), the most common

form of malformation of cortical development (MCD) in adult-

hood, is characterized by the presence of ectopic neuronal nodules

lining the walls of the lateral ventricles. Theses nodules can read-

ily be detected with MRI. There is a wide spectrum of anatomic

and clinical presentations of PNH, ranging from asymptomatic

small unilateral or bilateral nodules to extensive agglomerates of

heterotopia lining the lateral ventricles in patients with intractable

epilepsy and intellectual disabilities [2,3]. There is also a range of

associated cerebral and systemic malformations. Mutations in the

FLNA gene, on Xq28, were found in 100% of families with X-

linked bilateral PNH and in 26% of sporadic patients with PNH

[3,4] (Table 1). The FLNA gene encodes a very large (280 kD)

cytoplasmic protein that binds to actin and a wide range of cyto-

plasmic signaling proteins involved in cell adhesion and migration

[5]. In the brain, FLNA is expressed at high levels in prenatal and
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neonatal stages and these levels diminish during adolescence to

reach moderate expression in adulthood [6]. FLNA is also

expressed in pyramidal neurons in the neocortex where it local-

izes in somatodendritic compartments [7]. Heterozygous females

have normal to borderline intelligence and epilepsy [4]. A few liv-

ing male patients with bilateral PNH due to FLNA mutations have

been reported; however, most male fetuses are not viable [8]. Co-

agulopathy and cardiovascular abnormalities have been observed

in some patients [4,8].

Other Genes than FLNA can Cause PNH

A rare recessive form caused by mutations in the ARFGEF2 gene,

on 20q13.1, has been reported in two consanguineous families

[9]. ARFGEF2 encodes a protein called BIG2 (or brefeldin A-inhib-

ited guanine nucleotide exchange factor 2 protein) localized along

the Golgi and recycling endosomes [10]. BIG2 is thought to carry

out ARF-dependent vesicle trafficking along these subcellular

compartments [11]. Recently, it has been reported that biallelic

mutations in genes encoding the receptor-ligand cadherin pair

DCHS1 and FAT4 lead to a multisystem disorder that includes

PNH [12]. PNH has also been observed in patients with chromo-

somal rearrangements, such as deletions of the 5q14.3-15 [13] or

6q27 [14] regions. For the latter, a de novo missense mutation in

the C6orf70 gene, mapping the minimal critical deleted 6q27

region, was identified in a sporadic patient with developmental

delay, epilepsy, and PNH [14]. To date, 13 distinct PNH disorders

have been described but for the majority of them the etiology

remains unknown [13].

The mechanism involved in the genesis of PNH remains elu-

sive although it is widely accepted that it results from a defective

migration of neurons which remain blocked in the ventricular

(VZ)–subventricular zone (SVZ). Although two Flna knockout

mice strains have been developed, progress has been hindered

by the fact that none of them showed the presence of ectopic

nodules [15,16]. In contrast, in utero knockdown of Flna expres-

sion has succeeded in reproducing a PNH phenotype in rat simi-

lar to the one observed in human patients and represents an

appropriate model to investigate pathogenetic mechanisms

underlying PNH associated to mutations in FLNA gene [17]. In

this model, PNH is associated with an impairment of radial glial

integrity in the VZ. Thus, the phenotype would associate a cell-

autonomous migration defect as largely proposed and an alter-

ation of RGCs and radial glial scaffold (Table 2). Interestingly,

we demonstrated [17] a similar disruption of radial glial cells in

human PH brains from a 35-week fetus and a 3-month-old

child, harboring distinct FLNA mutations. Other studies have

shown that mice mutant for MEKK4, a MAP kinase that regu-

lates the CSBP2 and JNK-MAPK pathways, showed a PNH phe-

notype [18]. Interestingly, phosphorylation of FLNA at serine

2152 depends on MEKK4 signaling and phosphorylation at this

site regulates FLNA localization at the cell membrane. Mice with

mutations in the Napa gene, which encodes for the vesicle traf-

ficking protein aSnap, also replicate the PNH phenotype [19].

The aSnap protein is involved in SNAP receptor (SNARE)-medi-

ated vesicle fusion thus suggesting that it plays a role in vesicle

trafficking in PNH formation. Finally, it has been shown that

deletion of the RhoGTPase Cdc42 gene in mouse disrupts the

neuroependymal lining, local adherens junctions, and prolifera-

tion of basal progenitors, which may lead to neuronal heterot-

opia [20,21]. Overall, as the majority of PNH genes are required

for some forms of vesicle trafficking, it has been proposed that

an overriding defect in the vesicle trafficking machinery may

contribute to PNH formation [22].

Experimental PNH can also be modeled in rodents using various

nongenetic manipulations, including prenatal exposure to ioniz-

ing radiations, methylazoxymethanol (MAM), carmustine (1-3-

bis-chloroethylnitrosourea or BCNU) in rats, or postnatal expo-

sure to ibotenate in hamsters. These teratogens produce damages

within the proliferative neuroepithelium, affecting both the gene-

sis of newborn neurons and their migration along the radial glial

scaffold [23–25]. As a consequence, animals generated with these

Table 1 Genes and phenotypes associated with periventricular nodular heterotopia

Gene (Locus) Protein Etiology Phenotype References

FLNA (Xq28) Filamin A In females: de novo germline mutations

(missense, nonsense, and frameshift

mutations),

intragenic deletions, and duplications

In males: lethal in the majority of cases.

Bilateral PNH associated with coagulopathy and

cardiovascular abnormalities in some patients

[3, 4]

ARFGEF2 (20q13.13) BIG2 Inherited mutations (missense and

frameshift), autosomal recessive

Bilateral PNH associated with microcephaly [9]

C6orf70 (6q27) ERMARD De novo deletions and missense

mutation (one)

Bilateral PNH [14]

FAT4 (4q28.1) FAT atypical

cadherin 4

Inherited compound heterozygous

(nonsense and missense) or

homozygous (nonsense) mutations

Posterior PNH (partially penetrant) [12]

DCHS1 (11p15.4) Dachsous

cadherin-related 1

Inherited homozygous (nonsense

and missense) mutations

Posterior PNH (partially penetrant) [12]

FLNA, filamin A, alpha; ARFGEF2, ADP-ribosylation factor guanine nucleotide exchange factor 2; BIG2, brefeldin A-inhibited guanine nucleotide

exchange protein 2; C6orf70, chromosome 6 open reading frame 70; ERMARD, ER membrane-associated RNA degradation; FAT4, FAT atypical cadh-

erin 4; DCHS1, dachsous cadherin-related 1.
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treatments invariably have microcephaly and altered cortical

structure and exhibit various types and combination of gray mat-

ter heterotopia, including periventricular nodular heterotopia,

layer I ectopia, intracortical and subcortical heterotopia, and intra-

hippocampal heterotopia.

Subcortical Band Heterotopia

SBH or double cortex syndrome is a malformation of cortical

development that represents the less severe form of the lissen-

cephaly spectrum [26]. SBH refers to bilateral smooth bands of

gray matter located in the subcortical white matter. It is generally

associated with a normal or mildly simplified gyration pattern,

broad circumvolutions, and an increased cortical thickness. SBH

cortical malformations always have a genetic origin, and abnor-

malities in the DCX and LIS1 genes account for the majority of the

SBH cases. Although much less common, mutations in genes

encoding microtubule subunits (TUBA1A; TUBG1) have also been

identified in a few SBH patients [27–29], as well as in the microtu-

bule-dependent motor protein KIF2A gene [29] (Table 3).

Most SBH patients are females because the most common

genetic abnormalities are found in DCX, an X-linked gene, and

whereas heterozygous females develop SBH, hemizygous males

develop an isolated lissencephaly. The majority of female patients

with DCX mutations are sporadic, but familial cases have been

described and could represent up to one-third of the female

patients [30]. DCX mutations are found in up to 88.5% and in

100% of female patients with sporadic SBH and familial SBH,

respectively [30–32]. Although much less common than females,

male SBH patients associated to DCX mutations or deletions have

been described [33–35]. They may result from a rather mild muta-

tion that allows some residual function of DCX or the mutation or

deletion is mosaic, affecting a portion of the neurons only

[30,33,36]. Somatic mosaicism in these male patients reproduces

the female situation in which depending on the X inactivation

pattern, a variable proportion of neurons are DCX deficient.

Mosaic heterozygous point mutations in the LIS1 gene account for

a small number of SBH sporadic cases [37,38].

DCX encodes a microtubule-associated protein (MAP), which

nucleates and binds to the 13-protofilament microtubules [39–

41]. It is highly expressed in newly generated neurons as soon as

they exit the cell cycle, all along their journey from VZ/SVZ to the

cortical plate, and in their following differentiation steps, soon

afterward it is downregulated. The DCX microtubule domain is

made up of two microtubule-binding domains, an N-terminal (N-

DC) and a C-terminal (C-DC) domain.

LIS1 encodes a highly conserved protein with an N-terminal ho-

modimerization and coiled-coil domain, and seven C-terminal

WD40 (tryptophan-aspartic acid-40) repeats [42]. LIS1 binds to

the cytoplasmic dynein, a microtubule minus end-directed motor

[43]. The LIS1/dynein complex has been shown to regulate the

orientation of the spindle of dividing neuronal precursors at the

VZ and decreased LIS1 levels lead to depletion of radial glial pro-

genitor cells (RGCs) [44]. LIS1 also binds to several MAPs, includ-

ing DCX [45] and genetic interactions between these two genes

have been demonstrated in vivo in the mouse [46]. LIS1 is

Table 2 Genetic animal models of periventricular nodular heterotopia

Gene Animal model Phenotype Altered cellular process Molecular function References

Flna Flna conditional knockout mouse Small brain; severe vascular

defects; high rate of early

lethality in males

Unknown Cytoplasmic protein;

binds to actin and

numerous signaling

proteins; cell adhesion

and migration

[15]

Flna knockdown in rats PNH; migration arrest in SVZ and IZ Proliferation of NP;

RGC

scaffold; neuronal

migration

[17]

FLNA overexpression in mice Migration arrest in SVZ and IZ [132]

Fat4 Fat4 knockdown in mice Migration arrest in SVZ and IZ;

white matter neuronal heterotopia

Neuronal migration Member of the

protocadherin

superfamily

[12]

Dchs1 Dchs1 knockdown in mice Migration arrest in SVZ and IZ;

white matter neuronal heterotopia

Neuronal migration Member of the

protocadherin

superfamily;

ligand for FAT4

C6orf70 C6orf70 knockdown in rats Migration arrest in SVZ and IZ Neuronal migration Unknown (probably

involved in

vesicular trafficking)

[14]

Mekk4 Mekk4 knockout mouse

Mekk4 knockdown in mice

Bilateral PNH; degenerated

forebrain

Neuronal migration;

VZ lining

MAPK kinase kinase;

regulates CSBP2

and JNK-MAPK

pathways

[18]

Napa Alpha Snap (Napa) mouse;

spontaneous genetic model,

autosomal recessive

PNH Neuronal migration;

VZ lining

Involved in

SNARE-mediated

vesicle fusion

[19,133]

Flna, filamin a; Fat4, FAT atypical cadherin 4; Dchs1, dachsous cadherin related 1; C6orf70, chromosome 6 open reading frame 7; Mekk4, MEK kinase 4

(replaced with Map3k4, mitogen-activated protein kinase kinase kinase 4); Napa, N-ethylmaleimide-sensitive fusion protein attachment protein alpha.
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required for nuclear movement during neuronal migration by

coupling the nucleus to the centrosome [47].

In addition to DCX and LIS1, genes classically involved in tubu-

linopathies such as those encoding microtubule subunits and ki-

nesins have been associated to SBH. A large number of TUBA1

mutations have been identified in patients with lissencephaly but

one mutation has been identified in a female patient with SBH

[27,48]. TUBA1 encodes the a-tubulin which heterodimerizes

with the c-tubulin. A mutation in TUBG1 was also identified in a

patient with laminar heterotopia associated with posterior pachy-

gyria and a dysmorphic corpus callosum [29]. TUBG1 encodes a

c-tubulin subunit, which is highly expressed in fetal brain. The

c-tubulin is a component of the centrosome and associates with

other proteins to form the c-tubulin ring complex implicated in

microtubule nucleation [49]. A single de novo heterozygous mis-

sense (dominant negative) mutation in the KIF2A gene was iden-

tified in a female patient with frontal band heterotopia, posterior

predominant pachygyria and severe congenital microcephaly

[29]. The microtubule-dependent motor protein KIF2A is an M-

kinesin and drives the ATP-dependent depolymerization of micro-

tubules. The fact that mutations affecting all these genes are only

missense heterozygous mutations suggests that they are dominant

negative and that haplo-insufficiency is not the primary mecha-

nism causing the SBH.

From Human to Animal Models of SBH

If human genetics studies have allowed the identification of

mutant genes in SBH patients (such as DCX or LIS1), animal

models in which expression of the corresponding genes have

been inactivated are invaluable tools to identify the associated

disrupted biological processes. In addition, spontaneous SBH

animal models such as the tish rat, the HeCo, or BXD29-Trl4lps

2J/J mice have also led to a better understanding of potential

SBH genesis mechanisms and, in the case of the HeCo mouse,

to the identification of a new gene whose implication in human

ribbon-like heterotopia has been subsequently confirmed [50].

Finally, knowledge of the molecular and cellular pathways in

which the previously identified SBH genes are involved is an

excellent starting point as implication of other genes participat-

ing into the same pathways can be tested in new animal models

(Table 4).

SBH has been long envisaged as a cell-autonomous neuronal

migration disorder; however, recent animal model studies show

Table 3 Genes and phenotypes associated with subcortical band heterotopia

Gene (Locus) Protein Etiology Phenotype References

DCX (Xq22.3-q23) DCX In females: de novo germline mutations

(missense, nonsense, and frameshift

mutations), deletions, and duplications

Anteriorly predominant SBH; de novo

mutations generally associated with the

most severe phenotype (thick band

frequently associated with frontal

pachygyria, shallow sulci, and ventricular

enlargement)

[30,120,121]

In females: inherited mutations

(missense, nonsense, and frameshift)

Anteriorly predominant SBH; inherited

mutations generally associated with a

milder phenotype (thin band)

In males: de novo somatic mosaic

mutations (missense, nonsense,

and frameshift) and deletions

Anteriorly predominant SBH [31,33,35,36,122–125]

In males: inherited mutations

(missense mutations only)

Anteriorly predominant SBH; milder

phenotype

[33]

LIS1 or PAFAH1B1

(17p13.3)

LIS1 De novo somatic mosaic

heterozygous (missense and

nonsense) mutations

Posteriorly predominant SBH [37,38]

KIF2A (5q12.1) KIF2A De novo germline heterozygous

(missense) mutation, dominant

negative effect

Frontal band heterotopia, posterior

predominant pachygyria, and severe

congenital microcephaly

[29]

TUBA1A (12q13.12) a1-tubulin De novo germline heterozygous

(missense) mutation, dominant

negative effect

Laminar heterotopia, partial agenesis

of the corpus callosum, and hypoplasia

of the cerebellar vermis

[27,48]

TUBG1 (17q21.2) TUBG1

(c-Tubulin)

De novo germline heterozygous

(missense) mutation, dominant

negative effect

Laminar heterotopia, posterior pachygyria,

and a thick and dysmorphic corpus callosum

[29]

EML1 (14q32) EML1 Inherited compound heterozygous

(nonsense and missense) or

homozygous (missense) mutations

Giant bilateral periventricular and ribbon-like

subcortical heterotopia with polymicrogyria

and agenesis of the corpus callosum

[50]

DCX, doublecortin; LIS1, lissencephaly-1; PAFAH1B1, platelet-activating factor acetylhydrolase 1b, regulatory subunit 1; KIF2A, kinesin heavy chain

member 2A; TUBA1A, tubulin, alpha 1a; TUBG1, tubulin, gamma 1; EML1, echinoderm microtubule-associated protein-like 1.
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that SBH can result from dysregulation of cellular events

involving the neuroprogenitors such as abnormal proliferation,

mispositioning and/or differentiation, which will eventually lead

to an abnormal neuronal migration or a mispositioning of neu-

rons in the cortical wall. On the other hand, single molecules

can be involved in multiple cellular processes involving both

the neuroprogenitors and neurons, as it is the case for Dcx and

Lis1.

SBH, A Neuroprogenitor Defect?

Two rodent models, the spontaneous HeCo and conditional

RhoA�/� cKO (Emx1::Cre/RhoAfl/fl) mice, display a SBH which

clearly results from abnormalities in neuronal progenitor cells

[50–52]. In the HeCo mouse, dividing neuronal progenitors are

found from early to late stages of corticogenesis in ectopic places

throughout the cortical wall, such as the IZ and CP. Although

many progenitors are mislocalized, the adherens junctions

Table 4 Genetic animal models of subcortical band heterotopia

Gene Animal model Phenotype Altered cellular process Molecular function References

Dcx Dcx knockdown in rats and

mice

SBH and laminar

displacement of neocortical

neurons in rats; abnormal

neocortical lamination in

mice

Neuronal migration; neuronal

differentiation

MAP; nucleation,

assembly and stability of

MTs; regulation of

vesicle trafficking;

regulation of the actin

cytoskeleton

[61,62,66]

Dcx knockout mouse Abnormal hippocampal

lamination

Neuronal migration; neuronal

differentiation

[63,126–128]

Lis1 Lis1 knockdown in rats Migration arrest in SVZ and

IZ

Proliferation of NP; neuronal

migration; neuronal

differentiation; neuronal

apoptosis

Interacts with MTs, MT-

based motors and MAPs

[129]

Lis1 knockout mouse Defects in neocortical and

hippocampal neurogenesis

and migration

[59,60]

Kif2a Kif2a knockout mouse Migratory defects; abnormal

neocortical and

hippocampal lamination;

ventricle enlargement

Neuronal migration; neuronal

differentiation

M-Kinesin; drives the ATP-

dependent

depolymerization of MTs

[130]

Tuba1 Tuba1 heterozygous Jenna

(Jna) mouse

N-ethyl-N-nitrosourea (ENU)

induced mutant

Abnormal neocortical and

hippocampal lamination

Neuronal migration; neuronal

differentiation

Component of the MT

cytoskeleton

[48]

Tubg1 Tubg1 knockdown in mice Migration arrest in SVZ and

IZ

Neuronal migration; neuronal

polarization; neuronal

differentiation

Component of the

centrosome; nucleation

of MTs

[29]

Eml1 HeCo mouse, spontaneous

genetic model, autosomal

recessive

Bilateral SBH Proliferation of NP (ectopic

NPs)

MAP; cell cycle-

dependent localization

[50,51]

Unknown Tish rat, spontaneous genetic

model, autosomal recessive

Bilateral SBH; ventricle

enlargement

Proliferation of NP (ectopic

NPs)

Unknown [55–57]

RhoA Rhoa conditional knockout Bilateral SBH; cobblestone

lissencephaly

Proliferation of NP (ectopic

NPs); RGC scaffold; neuronal

migration

GTPase; stabilization of

the actin and MTs

cytoskeleton

[52]

Wnt3a Wnt3a transgenic mouse Cortical dysplasia; large

neuronal heterotopia

Proliferation of RGCs;

differentiation of IPs

Wnt-b-catenin signaling

pathway

[58]

Unknown BXD29-Trl4lps-2J/J mouse;

spontaneous genetic model,

two-loci autosomal

Bilateral SBH; partial callosal

agenesis

Neuronal migration Unknown [131]

Rapgef2 RA-GEF-1 conditional

knockout mouse

Bilateral SBH; commissural

and callosal agenesis;

ventricle enlargement

Neuronal migration Guanine nucleotide

exchange factor (GEF)

specific for the small

GTPases Rap1 and Rap2;

Rap1-mediated signaling

pathway

[111]

Dcx, doublecortin; Lis-1, lissencephaly-1; Kif2a, kinesin family member 2A; Tuba1a, tubulin, alpha 1A; Tubg1, tubulin, gamma 1; Eml1, echinoderm

microtubule-associated protein-like 1; RhoA, ras homolog gene family, member A; Wnt3a, wingless-type MMTV integration site family, member 3A;

Rapgef2, Rap guanine nucleotide exchange factor (GEF) 2; NP, neural progenitor; RGC, radial glial cell; MAP, microtubule-associated protein; MT,

microtubule.
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between the RGCs lining the ventricular wall are normal. How-

ever, dividing RGCs in the VZ display abnormal spindle orienta-

tions which might explain the appearance of ectopic progenitors.

These ectopic progenitors display an abnormal proliferation pat-

tern (higher labeling index/slowed cell cycle exit). On the other

hand, video microscopy of electroporated eGFP+ neurons shows

that HeCo neurons migrate normally either in a HeCo or wild-type

context. Eml1 was recently identified as the mutant gene in the

HeCo mouse: it is a microtubule-associated protein belonging to

the EMAP family of proteins whose members have been shown to

play a role in microtubule dynamics and cell division [53,54]. In

the mouse embryonic brain, Eml1 is expressed in neuroprogeni-

tors of the VZ and neurons of the CP. In utero Eml1 knockdown in

the WT mouse mimics the HeCo phenotype whereas Eml1 reex-

pression in HeCo mouse RGCs rescues it. The HeCo mouse muta-

tion is autosomal recessive, and human genetic studies have

further confirmed the implication of EML1 in SBH genesis as com-

pound or homozygous mutations were found in two families with

ribbon-like heterotopia [50].

The conditional RhoA�/� cKO mouse model shares similarities

with the HeCo mouse in that dividing neuronal progenitors are

found from early stages of corticogenesis in ectopic places

throughout the cortical wall and display an increased proliferation

(PH3+ cells) [52]. Later on, neuronal progenitors [RGCs and inter-

mediate progenitors (IPs)] tend to form a broad band located in

the middle of the cortical wall, from which the neurons separate

in two bands either toward the cortical plate or the VZ. The lower

band, near the VZ, gives rise to the SBH composed mostly of late

born neurons. From early stages of corticogenesis, most RGCs lose

their apical anchoring, and RG processes are highly disorganized.

Furthermore, transplanted GFP+ WT neurons into E14 RhoA�/�

cKO brains distributed as RhoA�/� neurons either in the cortical

plate or in the SBH at P2. Both microtubule and actin cytoskel-

etons are destabilized in RhoA�/� cKO brains, mainly in RGCs and

less so in neurons. Altogether, these observations demonstrate

that the SBH genesis is not due to an intrinsic neuronal defect but

clearly results from RGC defects: absence of apical anchoring and

adherens junctions, defects in RGC scaffold. RhoA�/� cKO mice

also display in addition a protrusion of neurons beyond layer I at

the pial surface of the brain, mimicking cobblestone lissencephaly.

RhoA belongs to the family of small Rho GTPases. As Cdc42 and

Rac1, two other members of this family, it is expressed in the VZ/

SVZ of the developing brain. Cdc42 has been shown to regulate

neural progenitor fate at the apical ventricular surface [20]. Up to

now, mutations or deletions in the RhoA gene have not been char-

acterized in human patients with SBH.

A third rodent model, the spontaneous tish rat displays a SBH

which also results from abnormalities in neuronal progenitor cells

and shares strong similarities with the HeCo mouse model [55–

57]. From early corticogenesis stages, RGCs and IPs, most likely

generated from the VZ/SVZ, are scattered throughout the cortical

wall, but an intact VZ is maintained in which RGCs display normal

adherens junctions. Ectopic tish�/� progenitors display an abnor-

mal proliferation (shortened cell cycle) which has been proposed

to be a consequence of their mislocalization rather than a cell-

autonomous defect [57]. In utero electroporation experiments

show that neurons generated from the VZ/SVZ contribute to both

the heterotopia and cortical plate, and although the radial fibers

are somewhat disorganized, neurons can still migrate throughout

the heterotopia to reach the cortical plate [57]. The gene associ-

ated to the tish phenotype has not yet been identified.

An additional mechanism involving specifically the IPs has been

uncovered with an in utero electroporation mouse model [58] in

which upregulation of the Wnt-b-catenin signaling pathway, by

overexpressing Wnt3a, induces two distinct phenotypes: an

increased proliferation of RGCs combined with a premature

differentiation of IPs into neurons. The accumulation of these

newly born neurons at the SVZ/IZ border leads eventually to the

formation of large neuronal heterotopia.

These rodent models strongly demonstrate that SBH can result

from an alteration of neuronal progenitors. It is even possible that

part of the effects linked to Lis1 and Dcx mutations results from a

similar mechanism as it has been shown that Lis1 affects the gen-

eration and survival of neuroprogenitors [59,60] and that Dcx�/y

RGCs display spindle orientation abnormalities affecting their pro-

liferation [46].

SBH, An Intrinsic Neuronal Migration Defect?

Radial migration of newborn neurons, from the VZ toward the pial

surface, is a critical step in the development of the cerebral cortex.

Early generated pyramidal neurons migrate by soma translocation,

independently from radial glia scaffold. As development goes on,

newly generated neurons generated from asymmetric division of

RGCs or symmetric division of IPs become multipolar in the SVZ

and migrate as multipolar cells through the SVZ and lower IZ. Neu-

rons become bipolar as they leave the IZ and switch their migration

mode to travel radially through the cortical plate. They migrate

along the radial glia scaffold by locomotion, with a three step

migratory mode: extension of a leading process, translocation of

the nucleus in the leading process (nuclear kinesis), and retraction

of the trailing process. All these migration steps and associated neu-

ronal morphological changes are critically regulated and involve

precise microtubule and actin cytoskeleton remodeling. Numerous

genes, among which Dcx and Lis1, have been shown to be involved

in the transition from multipolar to bipolar migration modes. In

utero short hairpin RNA (shRNA) mediated knocking down of Dcx

(Dcx KD) expression in the rat embryo leads to a massive accumu-

lation of multipolar neurons in the IZ, which form a SBH after birth

[61]. A minority of these Dcx KD neurons can still reach the cortical

plate and be identified at ectopic places in the normotopic cortex.

This mosaic model mimics the case of heterozygous female patients

in whom the absence of DCX expression occurs in a subpopulation

of cells only, those having inactivated the X chromosome bearing

the DCX WT allele. Strikingly in the mouse, downregulation of Dcx

expression by in utero shRNA interference leads to a cortical lami-

nation defect, but no SBH [62] and germ-line inactivation of the

Dcx gene has no major consequence on cortex development but

only on the hippocampus lamination [63]. Discrepancies between

the rat and mouse Dcx KD phenotypes have been proposed to arise

from species differences in the expression of the doublecortin-like

kinase 1 gene (Dclk1), a Dcx-related gene encoding a microtubule-

associated protein, and those between the mouse Dcx KD and KO

phenotypes to arise from an acute (KD) rather than chronic inacti-

vation (KO) which might allow compensatory mechanisms to take

place. In support of this hypothesis are the observations that
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double Dcx/Dclk1 KO mice (Dcx�/y;Dclk1�/�) display a clear cortical

migration defect, whereas single Dcx (Dcx�/y) or Dclk1 (Dclk1�/�)
KO mice do not [63,64] and that whereas the chronic germ-line

Dclk1 gene inactivation does not lead to a cortical migration defect,

acute Dclk1 inactivation in Dclk1 KD does [64]. An off-target effect

of Dcx shRNAs encoding the Dcx interfering RNAs (RNAis) has

recently been proposed to explain the migration phenotype

obtained in the mouse (heterotopic cortical neurons) as similar

phenotypes could not be reproduced with identical Dcx RNAis pro-

duced from artificial microRNAs (shmiRNAs) [65]. Moreover,

although no cortical migration defect was detected in the mouse

germ-line Dcx KO, it was detected after in utero electroporation of

Dcx shRNAs in Dcx KO mouse embryos which do not express Dcx

anymore [65]. Similar observations were made after electropora-

tion of Dclk1 shRNAs in the Dclk1�/� KO mouse embryos. Finally,

although single Dcx or Dclk1 KD with RNAis produced from shmiR-

NAs did not lead to a cortical migration phenotype, double Dcx/

Dclk1 KD with RNAis produced from shmiRNAs did. The cortical

migration phenotype obtained with the Dcx shRNAs has been pro-

posed to arise from a dysregulation of specific endogenous miR-

NAS. However, these results are difficult to reconcile with the

human genetic studies which clearly implicate DCX mutations in

SBH and with results obtained in the rat shRNA Dcx KD model as

Dcx overexpression in these rat embryos or neonates can rescue the

migration phenotype [61,66]. Further, it was recently demon-

strated that a fine tuning of Dcx expression levels in migrating neu-

rons via a miRNA-mediated regulation of CoREST/REST is

required for properly regulating neuron polarization and migration

in the neocortex [67]. It also remains to understand why cortical

migration defects do not generate an SBH in the double Dcx/Dclk1

KO or shmiRNAs Dcx/Dclk1 KD mouse models. Additional studies

will be needed to clarify these issues.

Are Rodent Good Models of Human SBH?

It is remarkable that so few rodent animal models display a SBH

even for genes which have been shown to lead to SBH in human

patients such as DCX or LIS1. From the currently available SBH

rodent models, it seems that the mutations impairing the RGCs

are more likely to induce a SBH than those affecting neuronal

migration at least in the mouse. Although most of the mechanisms

of brain development are shared between rodents and humans,

development of a gyrated cortex in human involves far more com-

plex processes than those required for the development of a

rodent lissencephalic cortex. Recent studies have shown that the

increased neocortical volume and surface area of the human brain

(and gyrencephalic brains from other species) are related to the

expansion of progenitor cells (radial glial-like cells and IPs) local-

ized in an additional SVZ, the outer SVZ (OSVZ). OSVZ radial

glial-like cells undergo both symmetric and self-renewing asym-

metric divisions that allow the generation of additional neurons

presumed to occupy the outer cortical layers [68,69]. Neurons also

have to migrate a much longer way. Taking into account these

developmental differences, a common genetic alteration might

generate very divergent phenotypes in rodents and human

patients thus raising concerns about the use of lissencephalic

rodent models for studying the mechanisms involved in SBH

genesis.

Pathophysiology of GMH

PNH Patients

Studies using intracranial EEG recordings in patients with PNH

suggested that epileptic discharges may originate from a large

epileptogenic network that includes heterotopic nodules and

other cortical areas. Intracerebral exploration with deep electrodes

revealed two situations, either no ictal discharges from the

explored nodule [70,71], or, most frequently, involvement of at

least one nodule in ictal discharges [70,72–78]. Seizures were

found to start simultaneously from heterotopic nodules and corti-

cal regions [70,73–77], from heterotopic nodules [70,75,77,79], or

from several regions including the temporal cortex and mesial

structures [70,76,78,80]. Similar observations were made using

EEG–fMRI and also revealed concomitant involvement of sites

distant to the malformation [81–83], reinforcing the notion that a

large epileptogenic network including heterotopic nodules and

other cortical areas may be involved.

Spontaneous and Induced Seizures in PNH
Models

Prenatally irradiated rats were found to exhibit spontaneous sei-

zures arising from the frontal cortex (75% of seizures) or from the

hippocampus (25% of seizures) [84], or recorded simultaneously

from the hippocampus and the frontal cortex in some cases [85],

whereas rats prenatally exposed to MAM were rarely observed to

exhibit spontaneous seizures (less than 20% of rats) [86].

Although no spontaneous seizures were reported in the other

models of experimental PNH so far, increased susceptibility levels

to induce seizures were found in all models, regardless of the

mode of seizure induction: sedating agents [87], flurothyl [88],

Kainic acid [89–91], pentylenetetrazole (PTZ) [17,90], hippocam-

pal kindling [92,93], or hyperthermia [94].

Origin and Propagation of Epileptiform Activity
in PNH Models

Experimentally induced PNH in MAM rats were never observed to

initiate bicuculline- or PTZ-induced seizures, neither in vivo [95]

or in vitro [95,96], and epileptiform activity in PNH, most com-

monly initiated in the dysplastic hippocampus, was generally syn-

chronized with that of the surrounding brain tissue. Accordingly,

isolated intrahippocampal heterotopias were observed to generate

spontaneous bicuculline- and 4-aminopyridine-induced epilepti-

form activity, independently of other hippocampal synaptic inputs

[97]. Tracing experiments in MAM rats revealed the presence of

reciprocal connections between both PNH and intrahippocampal

heterotopia and ipsilateral and contralateral cortices, and abnor-

mal cortico-hippocampal and cortico-cortical connections [98].

Ectopic hippocampal neurons composing intrahippocampal het-

erotopia were characterized as displaced neurons normally fated

to upper cortical layers that secondarily invaded the hippocampus

[90,99,100] and formed a functional bridge between the hippo-

campus and neocortex [90,101]. In the presence of bicuculline,

this aberrant bridge was found to allow propagation of hippocam-

pal epileptiform activity evoked by electrical stimulation of the
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dentate gyrus to the neocortex via the intrahippocampal het-

erotopia [101]. Heterotopic neurons and those located in the

dysplastic cortex in irradiated rats were found to develop long-

distance subcortical projections [102,103]. Altered organization

of thalamic fibers and abnormally projecting callosal fibers

were described in BCNU-treated rats [104,105]. Although prop-

agation of epileptiform discharges along these fiber pathways

has not been investigated in irradiated and BCNU-treated rats,

this pathological circuitry may contribute to the epileptogenic

network.

SBH Patients

Depth recordings are rarely carried out in patients with SBH who

are not considered as good candidates for epilepsy surgery given

its poor outcome [106]. In the few reported cases, epileptiform

activities were recorded from both the heterotopic and normotop-

ic cortices, independently or not, and they sometime propagated

to other brain structures [106,107]. Electrical discharges starting

elsewhere and subsequently propagating to both the heterotopic

and normotopic cortices were also reported [108], as well as an

absence of any epileptiform activities recorded from the hetero-

topic band [106]. Studies using EEG-fMRI [81,82] revealed that

both the heterotopic band and the normotopic cortex showed

fMRI signal changes during interictal and ictal epileptiform events.

Signal changes can be restricted to a portion of the heterotopic

band or involve a large activation of the entire double cortex [82].

Spontaneous and Induced Seizures in SBH
Models

Frequent spontaneous seizures were recorded in only two models:

tish mutant rats with seizures arising from both the heterotopic

and normotopic cortices [109], and Dcx KD rats, showing sponta-

neous seizures in adulthood [110]. Other models were only

reported to exhibit increased susceptibility to convulsant-evoked

seizures: pilocarpine-induced seizures in Heco mice [51] and RA-

GEF-1 conditional KO [111]. Surprisingly, BXD29-Trl4lps 2J/Jmice

were found more resistant to PTZ-induced seizures than wild-type

controls [112]. Seizure susceptibility was not investigated in RhoA

conditional KO.

Origin and Propagation of Epileptiform Activity
in SBH Models

Seizure activity in tish rats was investigated using depth electrode

recordings in vivo and revealed an almost synchronous onset in

the normotopic cortex and the heterotopic band, although lower

thresholds for penicillin- and 4-aminopyridine-induced interictal

spikes were found in the normotopic cortex of acute slices. Inter-

estingly, focal injection of TTX in the white matter separating the

normotopic cortex and the band heterotopia resulted in decreased

amplitudes of epileptiform spikes recorded from the band, suggest-

ing that the normotopic cortex may initiate epileptiform activity

[109]. Tracing experiments revealed that neurons located within

the band heterotopia display typical subcortical projections

[55,113], and staining for cytochrome oxidase showed that some

of the individual vibrissae have dual representations in both the

normotopic primary somatosensory cortex and the band heterot-

opia suggesting altered functional connectivity [114]. Dynamic

calcium imaging in slices from Dcx KD rats demonstrated that neu-

rons in both the normotopic cortex and SBH were more fre-

quently coactive in coherent synchronized oscillations than

neurons from control slices, and both areas were found to display

network-driven oscillations during evoked epileptiform bursts

[115]. Extracellular recordings from 60-channels microelectrode

arrays on slices from Dcx KD rats revealed that most interictal-like

discharges originating in the overlying cortex secondarily propa-

gates to the band heterotopia [116]. Interestingly, in vivo suppres-

sion of neuronal excitability in SBH does not alter the higher

propensity of Dcx KD rats to display seizures, suggesting a major

role of the normotopic cortex for generating seizures in brain with

SBH [116]. At the morphological level, SBH neurons were found

to send axonal collaterals to deep layers of the normally migrated

cortex, as well as long run axons reaching the contralateral cortex,

or the striatum or thalamus, that may contribute to the epilepto-

genic network [115].

Collectively, clinical and experimental observations support

the notion that apparently anatomically unaltered cortical

regions surrounding both PNH and SBH are included in a large

epileptogenic network prone to generate epileptiform discharges.

Further, these observations suggest that cortical areas overlying

malformations may play a major role for generating epileptiform

discharges and that plastic changes within these areas, together

with circuit-level defects, may be instrumental in both epilepto-

genesis and seizure generation. Accordingly, abnormal intrinsic

features were described in experimental heterotopia, not only in

the malformation, but in the overlying cortex as well. In experi-

mental SBH, the overlying cortex of Dcx KD rats was found to

exhibit a massive increase of ongoing glutamatergic synaptic cur-

rents [115]. Similar observations were made in experimental

PVNH, with neurons in the dysplastic cortex overlying nodules

showing increased glutamatergic synaptic currents and decreased

GABAergic synaptic currents in irradiated rats [117], and a

decreased sensitivity to GABA inhibition in BCNU-treated rats

[118]. Pyramidal neurons with repetitive burst firing patterns

were also described in the dysplastic cortex of MAM-treated rats

[119]. These observations in animal models may support the

hypothesis that increased neuronal excitability and abnormal

circuitry both contribute to favor the emergence of seizures from

the overlying cortex.
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